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Abstract

Introduction: Community detection, the process of identifying subgroups of highly connected 

individuals within a network, is an aspect of social network analysis that is relevant but potentially 

underutilized in prevention research. Guidance on using community detection methods stresses 

aligning methods with specific research questions but lacks clear operationalization. The 

Question-Alignment approach was developed to help address this gap and promote the high-

quality use of community detection methods.

Methods: Six community detection methods are discussed: Walktrap, Edge-Betweenness, 

Infomap, Louvain, Label Propagation, and Spinglass. The Question-Alignment approach is 

described and demonstrated using real-world data collected in 2013. This hypothetical case study 

was conducted in 2019 and focused on targeting a hand hygiene intervention to high risk 

communities to prevent influenza transmission.

Results: Community detection using the Walktrap method best fit the hypothetical case study. 

The communities derived via Walktrap were quite different from communities derived via the 

other five methods in both the number of communities and individuals within communities.

There was evidence to support that the Question-Alignment approach can help researchers 

produce more useful community detection results: compared to other methods of selecting high 
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risk groups, the Walktrap produced the most communities that met the hypothetical intervention 

requirements.

Conclusions: As prevention research incorporating social networks increases, researchers can 

use the Question-Alignment approach to produce more theoretically meaningful results and 

potentially more useful results for practice. Future research should focus on assessing if the 

Question-Alignment approach translates into improved intervention results.

Introduction

Social networks are related to health.1-3 Social network analysis has emerged as one tool for 

evaluating and understanding relationships between individual health and social 

environments, as well as developing interventions to prevent disease and improve public 

health.4-6 A variety of social network analytic methods are available to describe network 

composition, examine relationships between social networks and health, or identify the 

underlying group structure of social networks.2,7

Identifying groups within social networks is a highly relevant but underutilized tool for 

public health and prevention research. Typically, due to the diversity of ties in real-world 

networks, groups within a network are unclear. Community detection, the process of 

identifying subgroups of highly connected individual within a network, is one popular class 

of methods. Community detection has been used to examine many public health topics 

including HIV/AIDS,8 latrine ownership,9 smoking cessation,10 physical activity,11 cancer 

treatment patterns,12 and hospital service regions.13 Within a social network, communities 

are groups of individuals who are densely connected to each other, but have few connections 

to other individuals in the network.14 Once identified, community structures can help 

researchers examine if health tends to cluster within communities, or deliver targeted 

interventions to high-risk communities.5,14-17 Targeting communities is potentially more 

appealing than targeting specific individuals because individuals are often more amenable to 

change when the whole group changes at once, or some interventions may be more naturally 

targeted towards groups rather than individuals.5

There are many community detection methods, or algorithms, available to researchers who 

are interested in social networks. Algorithms rely on different heuristics to place individuals 

into mutually exclusive groups. Applying these algorithms is complicated, mainly due to 

ambiguity around which algorithm is best for a given circumstance.14,18-22 Recent articles 

have attempted to provide guidance algorithm selection using criteria such as the mixing 

parameter of a network, computation time, or overlap with a simulated community structure.
18,23 Other work has noted that the optimal community detection method will depend on 

how the communities will be used.22 Indeed, Yang et al specifically caution that guidance 

using criteria like computation time “have to be applied in conjunction with… research 

questions. A pure application of the recommendations could bias the results.”18 This appears 

to be generally acknowledged by community detection researchers,14,15,18-20,22-24 but 

concrete demonstrations of how algorithms could be applied in conjunction with health 

promotion and disease prevention research questions are lacking.
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Using a research question to drive algorithm choice allows researchers to leverage each 

algorithm’s different properties to produce a result that best aligns with their question. This 

paper provides guidance to help prevention researchers with a background in network 

analysis align their research questions with publicly available community detection 

algorithms. This method, the Question-Alignment (QA) approach, is intended to help 

researchers align a research question with the most theoretically appropriate community 

detection algorithm. This approach may not necessarily lead to better results but is designed 

to help researchers identify the most theoretically appropriate algorithm for their research 

question. This method requires a clearly defined research question and an understanding of 

the specific heuristics employed by algorithms. To help researchers apply the QA approach, 

the paper provides: (1) an overview of six publicly available algorithms, (2) a discussion of 

research topics relevant to each algorithm, and (3) an applied example of the QA approach 

using real-world data.

Algorithms Overview

To begin, overviews for several definitions necessary to understand the described community 

detection algorithms are provided. Modularity quantifies the density of links within 

communities compared to links between communities (ranges from −1 to 1).16 Path lengths 
(or ‘walks’ between two nodes) are the number of edges one would have to use to ‘walk’ 

from one node to another. The shortest path length is the path between two nodes that 

involves traveling down the minimal number of edges.25 A random walk is a path between 

two nodes where each step is randomly chosen.25 Dendrograms are tree diagrams returned 

by some algorithms that visualize community divisions at each step of the algorithm.14

Six popular algorithms are considered. These algorithms are readily available in the R igraph 
package,26 have shown good computational performance in networks of less than 1000 

nodes,18 and have distinct features: Edge-Betweenness,27 Random Walktrap,28 Label 

Propagation,29 Infomap,30 Louvain,31 and Spinglass.32 Table 1 provides a high-level 

overview of each algorithm and outlines features that researchers may be interested in, such 

as their ability to handle directed networks or be customized. Algorithms are classified as 

divisive, agglomerative, or optimization based. Further information on each algorithm is 

available in the Appendix.

Divisive

Divisive algorithms begin with a complete network and iteratively divide the network into 

smaller communities. The Edge-Betweenness algorithm is one divisive method that defines 

communities by iteratively removing edges that have a high likelihood of linking separate 

communities.27 This algorithm continues until the full network has been completely divided 

(i.e., each node is its own community) and returns a dendrogram.

Agglomerative

Agglomerative algorithms begin by considering each node as its own community and then 

iteratively combine nodes into larger communities. The Walktrap method is based on the 

premise that nodes within communities are likely to be connected by shorter random 
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“walks”.28 Communities are iteratively merged together by minimizing the overall distance 

between nodes and communities, defined by random walks. The maximum path length of 

the random walks can be specified to result in more close-knit or more diverse communities. 

The algorithm continues until all nodes in the network are merged into a single community 

and returns a dendrogram. Label Propagation identifies communities through the 

transmission of labels between nodes.29 Each node starts with a unique label, and randomly 

selected nodes adopt the label of the majority of its neighbors. The algorithm stops when 

every node has the same label as the majority of adjacent nodes.

Optimization based

The main feature of optimization algorithms is finding the optimal solution for a pre-

specified objective function. The global optimum for modularity can be calculated using 

cluster_optimal() in the R igraph package.26 Due to the complexity of finding the global 

optimum for moderately sized networks (100+ nodes), other algorithms, which we focus on 

here, seek to more efficiently come to a solution. The Louvain algorithm, also known as 

Multilevel algorithm, is an efficient algorithm that seeks to maximize modularity by merging 

nodes into communities.31 The algorithm stops when no merges result in a modularity 

increase. The Spinglass algorithm optimizes a function that rewards edges with a community 

and penalizes edges between communities and stops when that function is minimized. That 

function can be modified to place a bigger (or smaller) emphasis on edges within 

communities. Finally, the Infomap algorithm focuses on optimizing the flow of information 

throughout a network.30 Communities are iteratively merged together to optimize 

information flow and the algorithm stops when no further optimization is possible.

The Question-Alignment Approach

Similar to prior guidance,18,19,23 the Question-Alignment approach compels researchers to 

choose a community detection algorithm based on a specific research question, rather than 

other criteria such as computation time or convenience. Researchers should first clearly 

define their research question. Second, they should state how community detection will be 

used to answer that research question. Then, researchers should answer the following three 

guiding questions:

• What biological, social, or behavioral process are driving the formation of 

specific communities within a network?

• How might the main health variables of interest influence properties of the social 

network? How are they influenced by the network?

• What do ties represent in the network (e.g., physical contact, communication 

channels, romantic relationships)?

Answers to these questions can then be aligned with and guide selection of a specific 

community detection algorithm. This approach helps researchers motivate and justify their 

algorithm selection. When the QA approach suggests multiple algorithms are appropriate, 

algorithms could be further selected based on stability33 or researchers could use an 

ensemble of potential algorithms.34
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Example Applications of the QA Approach

To help readers apply the QA approach in their own work, specific research topics in the 

fields of public health and disease prevention that could align with specific algorithms are 

discussed. Walktrap and Infomap are the two algorithms that define communities based on 

flow and may be the best suited for questions about transmission of information, 

communication, behaviors, or infectious disease. Walktrap would be preferred when 

researchers want flexibility in choosing community structures or the ability to explore 

several different cut points for communities since Walktrap returns a dendrogram. Infomap 

may be preferred if a researcher wants to use an algorithm with a clearly defined stopping 

rule or has a directed network. For example, researchers have attempted to create updated 

hospital service regions by identifying communities using patient-to-hospital flow data.13 

While these authors used the Louvain algorithm, it may have been more theoretically useful 

to derive communities using a flow-based algorithm like Walktrap or Infomap.

The Edge-Betweenness algorithm divides the network by iteratively removing edges. The 

resulting divisions in the dendrogram are different from the dendrogram produced by the 

Walktrap algorithm due to the different procedures used to identify communities (i.e., 

divisive vs. agglomerative; edge-betweenness vs. path length). This algorithm is essentially 

removing ‘bridges’ between communities, allowing identification of people who link 

communities. Additionally, Edge-Betweenness indicates how efficiently the network can be 

split into disconnected pieces. This information is particularly helpful when trying to 

interrupt transmission within a network. By identifying which edges link groups together, 

these links can be targeted to prevent wider transmission across groups. The dendrogram 

output of Edge-Betweenness means these links can be identified at several levels. One 

potential use would be identifying which connections in a sexual network pose increased 

risk of transmission across groups underlying the network.

Label Propagation is a useful algorithm for researchers interested in modeling the adoption 

of social norms or an intervention because the algorithm defines communities based on 

iterative adoption processes. However, Label Propagation focuses on adoption that occurs 

when the majority of a specific node’s adjacent nodes have adopted a label. Other adoption 

processes, such as adoption when one adjacent node adopts, or adoption when all adjacent 

nodes adopt, may not be represented well by this algorithm.

Algorithms that focus on minimizing outside connections while promoting within-

community connections, such as Spinglass and Louvain, may be most valuable to 

researchers interested in using community detection results as part of a larger analytic 

strategy. After individuals are placed in communities, those communities could be used as 

clustering variables or fixed effects in standard linear modeling techniques. For example, a 

recent article identified communities using the Louvain algorithm.35 The authors then 

compared the relative contribution of social network communities, schools, and 

neighborhoods to the total variance in adolescent body mass index in hierarchical linear 

models.35 Researchers can also use community detection results to improve their estimation 

of causal effects. Estimation of causal effects in the presence of interference – when one 

individual’s treatment affects the outcome of their social ties – requires special approaches.
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36 Communities identified via Spinglass or Louvain may provide a good approximation of a 

structure where interference is present within communities, but not between (i.e., ‘partial 

interference’36,37). Community designations can then be used to calculate inverse 

probability weights extended for settings with interference.37 In these scenarios, Spinglass 

may be preferred over Louvain for defining groups best meeting partial interference, since 

the tuning parameter of Spinglass can place greater emphasis on missing edges between 

communities, better satisfying the partial interference assumption.

In practice, researchers will also have to consider features of the algorithm and the network 

under study. For example, certain algorithms are only applicable to undirected networks. 

Researchers may choose to use an algorithm defined for directed networks or consider 

symmetrizing their network (i.e., transforming a directed network into an undirected 

network).

An Example of the QA Approach

The QA approach is demonstrated using an undirected social network from the 2013 eX-

FLU social networks and health randomized trial.38 For clarity, analyses include the largest 

component of the network, which drops isolated nodes and other small groups on the 

periphery of the network. This data is used to help answer a hypothetical research question 

and illustrate how one might apply the QA approach to achieve more relevant analytic 

results. First, the example research question and algorithm chosen via the QA method are 

discussed. Then, the results under the chosen algorithm are compared to results under the 

five other algorithms presented in this paper. All analyses were conducted in 2019.

The illustrative example focuses on preventing influenza transmission with an intervention 

to promote optimal hand hygiene practices.39,40 Organizations may be operating under 

limited resources and cannot afford to broadly disseminate this type of intervention. A 

researcher might ask: “Does an intervention delivered to high-risk communities decrease the 

incidence of influenza compared to a broadly disseminated intervention?” This question 

requires a researcher to identify high-risk groups to target. This can be done using 

community detection, and the Walktrap algorithm may be the most appropriate algorithm to 

use because it is most compatible with a person-to-person transmission model.

The Walktrap algorithm does not have a predefined stopping rule, and so there are 314 

possible community structures resulting from the algorithm (Figure 1), ranging from all 

nodes being their own community to all nodes being in one community. The community 

structure with the highest overall modularity was composed of 35 communities ranging in 

size from 2 to 44.

Figure 2 compares results obtained using the Walktrap vs. the other five algorithms, using 

the community division automatically returned by igraph for each. Figure 2 highlights the 

need for purposeful selection of an algorithm because the resulting community structure 

(i.e., number of communities, distribution of individuals within communities) can differ 

greatly based on algorithm. Analyses used the adjusted Rand index (AR) to compare each of 

the five alternative community structures to the Walktrap community structure. The AR 
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index ranges from 0 to 1, with 0 indicating no overlap, and 1 indicating perfect overlap 

between two structures.41-43 The algorithm that overlapped the most with Walktrap was 

Infomap (AR=0.72). Edge-betweenness, Spinglass, and Louvain all had similar amounts of 

overlap with Walktrap (AR=0.68 or 0.69) and Label Propagation had the least overlap with 

Walktrap (AR=0.55).

Finally, differences in returned community structure may influence the targeted selection of 

high-risk communities (Figure 3). From the full set of communities identified within each 

algorithm, communities meeting the high-risk definition can be identified: communities that 

contain at least five individuals, >80% of whom have suboptimal hand hygiene behaviors 

(did not wash their hands at least 5 times a day for 20 seconds each38,44), and are connected 

to at least five other groups in the network (i.e., degree centrality7 above five).

Using Walktrap, there are 3 medium-sized distinctive communities containing 39 people 

total that are considered high-risk. Those communities may be ideal for intervention 

delivery, especially because they are also connected to other communities in the network. 

All other algorithms identify only one or two communities that meet the high-risk criteria. 

Infomap returns results that are also practically relevant for this case study: one highly 

connected community with a high prevalence of suboptimal hand hygiene and one smaller 

community where 100% of individuals have suboptimal hand hygiene. Nonetheless, 

Walktrap is a better choice because it identifies more communities that meet the high-risk 

decision criteria and therefore reaches more total individuals (39 via Walktrap vs. 26 via 

Infomap). The other algorithms identify anywhere between 21 (Louvain) to 42 (Edge-

Betweenness) individuals in high-risk communities, but almost all are less connected than 

the communities identified via the Walktrap algorithm. eX-FLU also collected information 

on what residence hall the students lived in. As an example of an alternative selection 

strategy, the residence hall with the highest proportion of suboptimal hand hygiene. There 

are 40 students in this chosen residence hall, of which 84% have suboptimal hand hygiene 

practices. This residence hall was considered to have no connections, since it was not 

selected using social network data. This point in Figure 3 illustrates that intervention groups 

selected via community detection may be more useful in this theoretical example because 

they could identify groups with either higher suboptimal hand hygiene prevalence and/or 

groups that are spread throughout the network.

No single algorithm would be preferred for all research questions. Consider the following 

alternative questions: “What is the best way to split the network to prevent influenza 

transmission between groups?” In this case, Edge-Betweenness may be the most useful, 

since it identifies edges that link communities underlying the network. As another example, 

consider: “What is the causal effect of optimal hand hygiene on influenza infection?” The 

Spinglass algorithm might be the most appropriate because it can potentially divide the 

network into communities more closely corresponding to the assumptions of inverse 

probability weights for partial interference. As mentioned above, Infomap could also have 

been used in this scenario. Walktrap was preferred because it returns alternative community 

divisions that could be examined, and the algorithm can easily be adjusted in R to 

incorporate a ‘maximum path length’.
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Limitations

This approach does not explicitly address how tuning parameters could be incorporated into 

algorithms. However, adjustments to tuning parameters decrease the ease of implementation 

and automation of algorithms, which are desirable features for most analyses.23 One 

alternative way to customize algorithms results is through dendrograms, which allow 

researchers to choose community structures other than the structure automatically chosen by 

R. This paper can provide a useful overview of the algorithms and guidance on their 

application but should not be considered a sufficient resource to learn the intricacies of 

community detection algorithms. Finally, the analyses did not demonstrate that the QA 

approach will necessarily lead to better outcomes for a given study; rather, analyses showed 

that using the QA approach can help researchers obtain the best community structure to 

answer their research question.

Conclusions

Community detection is an underutilized method that could have substantial benefits for 

public health research and developing disease prevention interventions in a network context. 

Previous work has suggested that researchers align their research question and community 

detection algorithm choice. This work fills an important gap by operationalizing this 

suggestion in the form of the Question-Alignment approach. Future research should further 

refine and specify the QA approach, and use the QA approach to help select community 

detection algorithms when possible.
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Figure 1: 
Dendrogram displaying Walktrap results

Figure notes: Walktrap is an agglomerative algorithm, meaning that each individual node 

begins as its own community (blue line) and the algorithm ends when all nodes have been 

merged into one community (green line). Dendrograms are a visual display of the iterative 

grouping of nodes. In each iteration (x-axis) one node/community is combined with another 

node/community until all nodes are in one community. Chosen structure is denoted by the 

red line and is the community division with the highest modularity per igraph methods.
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Figure 2: 
Comparison of community detection results from six algorithms

Figure notes: Colored circles are placed around individuals assigned to the same community. 

Community membership is mutually exclusive. All results are overlaid on the same network 

graph.
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Figure 3: 
Communities classified as high-risk by each algorithm

Figure notes: Each community contains at least 5 people, has prevalence of suboptimal hand 

hygiene that is greater than 80%, and is connected to at least 5 other communities. Selected 

points are jittered to prevent overlap. Point sizes are scaled by the number of individuals in 

each community.
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Table 1:

Overview of algorithms

Method Stochas
tic

Both
directed

and
undirecte

d?

Able to
incorporate

edge weights
a

Customization Possible use cases

Divisive

 Edge-Betweenne ss27 ✓ ✓ Modify definitions of edges that 
are likely to link communities

Identify bridges between 
communities to disrupt 

transmission

Agglomerative

 Walktrap28 ✓ Modify allowable length of 
random walks Transmission between individuals

 Label Propagation29 ✓ ✓ Adoption of social norms

Optimization

 Infomap30 ✓ ✓ ✓ Spread of information

 Louvain31 ✓ ✓
Add self-loops to increase number 

of detected communities
b

Define communities for use as 
clustering variables in analyses

 Spinglass32 ✓ ✓c ✓ Tuning parameter (gamma) 
weights the importance of edges

Define communities for use as 
clustering variables in analyses

Notes: For all algorithms, igraph will return one community structure. Under algorithms that return dendrograms, is the division with the highest 
modularity and it is possible to select alternative community structures. In cases of algorithms with specific stopping rules, only one community 
structure is returned.

a
If an attribute named ‘weight’ is present in an igraph object, the algorithm will use this by default and the user should supply NA or NULL 

depending on the algorithm if they do not wish to use it. Researchers should use caution when using edge weights with the Edge-Betweenness 
algorithm. The algorithm considers weights to be distances, rather than connection strengths (i.e., higher weight = two nodes are farther apart). 
However, edge weights are considered connection strengths when calculating modularity to determine the final solution (higher weight = stronger 
connection).

b
This is not a feature specific to the Louvain algorithm implementation, but rather an alternative method to the Reichardt-Bornholdt resolution 

parameter that can be used for modularity-based community detection algorithms.45

c
While the algorithm itself allows for directed networks, igraph implementation only allows for undirected networks.
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